- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Burridge, Kevin M. (1)
-
Chandrarathne, Bhagya Madhushani (1)
-
De Alwis Watuthanthrige, Nethmi (1)
-
Gordon, Emma (1)
-
Konkolewicz, Dominik (1)
-
Lorigan, Gary A. (1)
-
Page, Richard C. (1)
-
Rahman, Monica S. (1)
-
Shah, Muhammad Zeeshan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Designing a surface that can disinfect itself can reduce labor-intensive cleanings and harmful waste, and mitigate spread of surface borne diseases. Additionally, since COVID-19 is an airborne pathogen, surface modification of masks and filters could assist with infection control. Styrene-maleic acid (SMA) copolymers and their derivatives were shown to have lipid-bilayer disrupting properties, making them candidates as anti-viral materials. A series of network polymers with styrene-maleic acid-based polymers and control over polymer chain-length and composition were synthesized. All the polymers formed mechanically robust structures, with tunable Young's moduli on the order of MPa, and tunable swelling capability in water. The SMA-based bulk materials, containing a zwitterionic polar unit, showed excellent lipid disrupting properties, being up to 2 times more efficient than a 10% Triton solution. The highest performance was observed for materials with lower crosslink densities or shorter chain-lengths, with lipid disruption capability correlating with swelling ratio. Additionally, the material can capture the spike protein of SARS-CoV-2, with up to 90% efficiency. Both the lipid disrupting and spike protein capture ability could be repeated for multiple cycles. Finally, the materials are shown to modify various porous and non-porous substrates including surgical and KN95 masks. Functional network modified masks had up to 6 times higher bilayer disruption ability than the unmodified masks without inhibiting airflow.more » « less
An official website of the United States government
